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Within the framework of the hydrodynamic theory of dense beams of charged 
particles the problem of shaping of a tubular cylindrical flow has been solved. 
For emission limited by space charge and temperature, shaping electrodes have 

been constructed; they were computed for exact solution and for asymptotic 
expansion, equally valid near the flow boundary. The possibility of generalizing 
the proposed algorithms for the case of curvilinear trajectories is discussed. 

In the hydrodynamic theory of dense beams the model of an emitter in the full 
space charge mode is most widely used. In this case for velocity U and field E, 

the zero values are taken. These assumptions lead to a fully defined form of the 

potential (I’ near the starting surface: in the flow domain cp - 2’s and in the 
Laplace domain v - Re lz + i (R--R,)]‘3. As the result we obtain a system of 
Pierce electrodes with the zero equipotential inclined to the beam boundary at 
the characteristic initial angle of 67.5’, irrespective of the emitter curvilinear- 

ity and of the density of current J at it. 
However, in recent times the interest has increased for triode guns with grid 

control [l - 41, guns giving sharp deceleration of the flow [S] and guns with auto- 
emissive cathodes. These structures are distinguished by a more complicated 
singularity for the potential in the low velocity domain. This singularity for a 
unidimensional flow between parallel planes are given by the following paramet- 
ric equations : z z ‘I6 J/” _!. ‘/“Et’ _! t-t, l’z : dz : dt, 2~ = $- 

The specific charge tl =- e / ~11 is omitted for reasons of convenience ; the 
change ,l(h -+ cp. hqJ - .I. z --: 0, I === 0 correspond to the emitter. 

For the structures mentioned above it is necessary to compute the shaping elec- 
trodes for the domain where the terms proportional to J, E and IT are commen- 
surable. In the triode gun, such a situation occurs when the potential of the con- 
trol grid deviates from its inherent value, i. e. from the value defined by the ” ‘.’ 
power law. In this case the grid can be considered as an emitter with nonzero 
conditions on it. 
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The shaping of a tubular cylindrical beam has been the problem which has 
attracted the attention of several authors [6 - 81, till in [9] its closed solution in 

integral form was given, In [6 - S] there are expansions which do not take into 
account the singularity in the full spatial charge mode and become divergent as 
the emitter is approached. 

The computation problem for narrow tubular beams under nonzero conditions 
at the emitter is solved below by means of asymptotic expansions. The same 

solution also permits a description of the case of sharp deceleration. An exact 
solution of the shaping problem of a cylindrical beam for different modes of 

emission is given. The results obtained by asymptotic expansions are compared 
with the exact expressions. 

1, Conrtruction of the solution fn the form of 8n asymptotic 
serf es, Let R. z be cylindrical and s. 1 - dimensionless coordinates connected by 

the relations 
II z /r* (1 -1. I-IS). z Em a,1 

Here Ii * is the characteristic beam radius (internal or external), n, is the character- 

istic strip width, p is the symbol indicating that s is the value of the first order small- 

ness in comparison with unity. Using the variables I, s the Laplace equation has the 

form 

We have to find the solution of (1.1) satisfying the following conditions along the bound- 

arys=Cr 

The formulas (1.2) are valid both for temperature limited emission (/i: 7L (). u = 0) 

and for the full space charge mode (/i = 0, U = 0). We perform the conformal 

transformation 
1 _! is _ 1j6 /n.:’ _j_ 

and express Eq, (1.1) in the coordinates 
dash denotes the complex conjugate) 

Expressing the potential in the form 

for the n-th term, we obtain 

(1.3) 
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I,-, 
i&p <n -k - 1) 

aw 1 
= fn(W, W) 

The solution of the problem (1. l), (1.2) is now given by the formulas 

The first few terms of the expansion computed using (1.3), (1.4) are given below 

c&O) = Re[‘~,J2w4 + fEw3 + (E2 + .IU)wZ + 2ElJ~l (1.5) 

It is obvious, that cp( 0 ) represents electrodes obtained by the rotation around z of equi- 
potential curves from the two-dimensional problem and subsequent approximations give 

corrections under axially symmetric conditions. 

2. Exact solution of the shaping problem of B cylindrical beam. 
It was mentioned above that the solution of this problem in integral form was quoted in 
[9]. However it is more convenient to represent the Riemann function not by an ellipti- 
cal integral but by a hypergeometric function 

G 1 F (‘/‘,. l12; 1; A). iti : - [(R - R,)’ + (;-z,)“] i MR, (2.1) 

and to use for the potential the formula following from such a representation under Cau- 
thy conditions, defined by the parametric expressions (1.2). Here R,, zc are the coor- 

dinates of the observation point at which the potential is computed. Then applying ana- 
lytical continuity of the Cauchy conditions the following expressions result : 

R t R,, z + ze, R, + R, z, --f z 

The parametric equations of a cylindrical boundary have the form 
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The expressions (2.2) are given in dimensionless variables, the meaning of which easily 
results from (1.2) and which will be used in the further examination and comparison 
with the asymptotic series, Finally we obtain the following form for the potential 

he= - 
(1 - R)2 i_ [z, (5) - z]” 

4R 7 W = U i- iu, 5 : 1L + ij 

For the case in which the distance from the boundary is large, a different form of the 
hy~rgeometric functions may be more useful 

F (‘iz, 1,‘2; I; h,) = (1 - A,)-QF (‘i,, *iz; 1, A,) 

F (“/,, 3/2; 2; A,) = (1 - kc)-:;F (“i,, 1/2; 2; A,) 
A, = Ae i (Ibe - 1) = [(l - R)2 -t- (2, - z)“l / [(I + tiy i- (2, - 2y1 

and the corres~nding expression for the potential 

(2.4) 

If in a hypergeometric function I; (n, b; c; z) the modulus of z exceeds unity or 
is close to it, then it is necessary to use the formulas for analytical continuity quoted in 

vol. 
The construction of the equipotential lines 21 = 2’ (IL, cp) is reduced to finding the 

root of Eq. (2.3) or (2.4) for fixed values a and (9. Transformation to R, z is made 
according to the formulas 

z + i (R - 1) = l/G zu3 + li2yw2 -I- 6, CL 5) 

In solving Eqs. (2.31, (2,4), it is useful to imagine a pattern of surfaces u = o (u, rp), 
the qualitative behavior of which in the meridional plane is known [7, 111. In (R, z) 
the part of the first quadrant where cp > 0 , is of interest. Since (2.5) maps A’ = ‘I 
as 2’ m= 0, it is sufficient to investigate the ray z = 0 for R > 0. With 6 -+ 0 
near the origin of the coordinates, the pattern of equipotential curves changes little, 
whereas for very large 1 w 1 the main term in (2.5) is a cubic one and reduces the 
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angles by a factor of three. With 6 = 0, y # 0 and small 1 w 1 , the angles are re- 

duced by half and for a ray undergoing a further transformation its inclination becomes 

still smaller. 

Y 

9 

Fig. 1 Fig. 2 

In Fig. 1 the curves at cp = const are shown for the case of full space charge 
O),inFig.Z - for temperature limited emission (7 = 0.5 - solid curves and 
1 

(Y = 
Y= 

1 - dotted curves). It is obvious that an increase in y causes a contraction of the 
pattern of the equipotential surfaces, Fig. 3 shows clearly the behavior of the curves 

‘p = const with nonmonotonic behavior of the potential for qmtn = 1/5 (solid lines) 

and (Pmtn = 4/, (dotted lines). 

3, Dlncurrion of reaultl. The exact solution of the problem of shaping a tub- 
ular beam allows to establish the domain of applicability of the asymptotic expansions. 
On Fig. 4 for comparison the curves cp = 0 computed using (2.3)* (2.4) and those ob- 
tained using the asymptotic series at y = 0 are shown. 

For R > 1 the convergence of v)~ towards an exact solution by approximations has 
an oscillatory character. We not that the series for 1 1 R used in the construction ofthe 
asymptotic expansions diverges at R > 2. Starting with R = 2.3, cp (3) causes a 
considerable error and soon becomes useless. For R < 1 a monotonic convergence 

towards an exact curve takes place, while the difference in the coordinates of the zero 
potential line becomes noticeable at R < 0.2 ('i'u/o for cpaand 15% for 9% at h! 7: 
0.1). For shaping electrodes with ‘p =+ 0 and also at y + 0 the approximate solution 

behaves analogously both qualitatively and quantitatively. It is interesting to note that 
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for y = 0 to 10 the curves computed on the basis of (pi, ~2 from the formula 

are practically identical to the family for cp = 

(2.4). Here z = fl (I?, cp), z ~- f2 (R, cp) 
and second approximations. 

Fig. 3 

const defined by the formulas (2.3), 

are the equipotential lines for the first 

Fig. 4 

In this way, asymptotic expansions can be successfully used not only for the computa- 
tion of guns giving thin walled tubular beams but also for solid flows. 

In curvilinear beams near the emitter (and the collector in the case of a sharp dece- 
leration) the structure of a singularity is the same as that for a straight-line current. 
Within a paraxial approximation the expansion for the potential in coordinates correspon- 
ding to the trajectories can be expressed as the product of the square of the velocity I/ 
along the axis containing the whole singularity by a regular function having the form of 
a power series in the distance from the beam axis [12].. For an examination of the ex- 
ternal problem of a gun with a curvilinear tubular beam, it is sufficient to determine 
the dependences z (t), v (t) and to solve the Laplace equation for more generalcauchy 
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conditions on a flow surface, using the method of constructing an asymptotic series des- 
cribed above. 
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